Discovering Hierarchy in Reinforcement Learning

Verfügbarkeit:
Auf Lager.
Artikelnummer:
1359515
  • Produktbeschreibung

    Discovering Hierarchy in Reinforcement Learning

    We are relying more and more on machines to performtasks that were previously the sole domain ofhumans. There is a need to make machines more self-adaptable and for them to set their own sub-goals.Designing machines that can make sense of the worldthey inhabit is still an open research problem.Fortunately many complex environments exhibitstructure that can be modelled as an inter-relatedset of subsystems. Subsystems are often repetitivein time and space and reoccur many times ascomponents of different tasks. A machine may be ableto learn how to tackle larger problems if it cansuccessfully find and exploit this repetition.Evidence suggests that a bottom up approach, thatrecursively finds building-blocks at one level ofabstraction and uses them at the next level, makeslearning in many complex environments tractable.This book describes a machine learning algorithmcalled HEXQ that automatically discovershierarchical structure in its environment purelythrough sense-act interactions, setting its own sub-goals and solving decision problems usingreinforcement learning.
  • Zusatzinformation

    Autor
    Bindung
    Taschenbuch
    Verlag
    VDM Verlag Dr. Müller
    ISBN / EAN
    9783639059243
  • Sie könnten auch an folgenden Produkten interessiert sein

    Art.Nr. 1957499

    Mongelli:Molecular Dynamics Simulations

    152,95
    Art.Nr. 1028277

    Reiß:Praxisbuch IT-Dokumentation

    79,95
    Art.Nr. 1479181

    Ramirez Molina:Diseño de una arquitectu

    84,00
  • 0 Kundenmeinungen

    Schreiben Sie selbst eine Rezension

    Ihre Meinung interessiert uns – und hilft anderen Kunden bei der Auswahl.

    Wenn Sie dieses Eingabefeld sehen sollten, lassen Sie es leer!